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Abstract—Tools for designing content require a medium that
allows the designer to efficiently express their creativity, and
a system that ensures the content being designed adheres to
the domain of interest. Interacting with Large Language Models
(LLMs) via natural language is extremely intuitive for a human
designer, although it remains largely unexplored. However, this
approach has a limitation: LLMs are prone to hallucinations
and they tend to ignore parts of the user request in their
responses. One workaround is to let LLM use tools such as
function calling to ensure consistency of the content. We formalise
this approach by proposing LLMaker, a general framework for
consistent video game content generation empowered by LLMs,
bridging the gap between creative vision and technical execution.
We demonstrate LLMaker’s application in generating dungeon
crawler level layouts, comparing it against alternative LLM-based
methods for content generation over multiple tests, testing for
consistency of the outputs and elapsed time per request.

I. INTRODUCTION

The design of video games, in their entirety or piecemeal,
has been a focal point of research in procedural content genera-
tion (PCG) [1]. Different approaches have been explored, some
relying on human feedback to guide the search process, such
as in mixed-initiative co-creation [2]. However, practical appli-
cations often suffer from cluttered user interfaces, inundating
designers with numerous controls and options, rendering the
tool more difficult to master.

Large language models (LLMs), recently popularised by
OpenAI with models like GPT-3 [3] are trained on vast
text corpora spanning diverse fields, acquiring an illusion of
reasoning, at times appearing human-like in their responses
[3]. Text generation via LLMs starts with an initial text prompt,
which usually defines some rules for the model, an optional
conversation history and the user input. Without additional
domain knowledge, responses rely solely on user input or
training data. This is the zero shot paradigm. Adding domain
knowledge through examples enables few-shot reasoning [4].
While a simple improvement, learning by examples can lead
to wrong assumptions by the model. Chain-of-thought [5]
simulates the reasoning behind the decision making process,
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Fig. 1: A screenshot of our chat-based level design interface,
LLMaker, on test case T5. On the left pane, the generated
level layout, with rooms (larger squares) and corridors (smaller
squares). On the right pane, the chat area with the conversation
between designer and LLM.

increasing the accuracy in responses given by the LLM on a
variety of tasks. As a way to further combat hallucinations,
finetuned models that supported function calling [6] were
introduced: in this case, the LLM relies on a separate system
or API to obtain data for their responses. Following [7],
we identify context inconsistency, where parts of the context
provided to the LLM is ignored, as the class of hallucinations
we are most concerned with, and evaluate our approach against
it by defining our own model accuracy measure.

Automated content generation in video games is a matter
of computational creativity [8]. Procedural content generation
(PCG) aims to create functional and enjoyable game elements.
Content generators for video games can operate with minimal
user input [9], or involve a human designer in a mixed-
initiative [2] framework, allowing designers to interact with
automated systems to quickly iterate over content design while
respecting designer agency and authorship, rapidly assisting
in the generation of levels [10], in-game content [11], and
game mechanics [12]. LLMs, democratised via APIs or open
source models, have spurred research into their potential for
generating video game content, yielding mixed results [13].
In this work, LLMs are implemented to streamline user inter-979-8-3503-5067-8/24/$31.00 ©2024 European Union



action by making the back-end system transparent, reducing
the need for designers to manage every detail of the domain
during the design process. Our own preliminary experiments
in this domain suggest structured content such as JSON is
effective for generating valid game content. However, it can
fall short when requests become complex or we attempt to
refine the artefact over multiple iterations, leading to errors,
poorly formatted data, and violations of domain constraints.
We define this as a lack of content consistency. LLMs follow
user instructions, which can include domain knowledge, im-
proving the quality of the responses compared to their zero-
shot reasoning performance [14]. In the context of content
generation, function calling can be used as a way for the LLM
to modify the artefact following the designer’s intention, with
no risk of illegal changes and without including the entire
artefact in the generated response. This approach offers two
main benefits: maintaining valid artefacts and swift response
times.

Inspired by these hypotheses, we present LLMaker, a frame-
work for co-designing video game content (see Figure 1).
In LLMaker, language models serve as expert intermediaries,
translating human designer requests into formal, valid inputs
for content generation. This ensures consistency and adherence
to domain constraints. Unlike existing LLM-powered PCG ap-
plications [15], [16], LLMaker allows for iterative refinement
and fine-grained modifications of a game level and its content
in a “chat-like” environment.

II. LLMAKER

LLMaker is a chat-only tool facilitating iterative game con-
tent co-design. It serves as a bridge between human designers
and a content generation system, utilising LLMs to translate
designer requests into instructions for a content generation
system. Unlike traditional tools, LLMaker enables designers to
express creativity freely via natural language, while ensuring
the content adheres to domain rules. This is achieved by
validating content via a back-end system. LLMaker can then
create content for different domains, requiring just different
back-ends to interact with. This versatility streamlines the
design process, making it less cumbersome for users. LLMaker
is, to our knowledge, the first design tool powered by LLMs
that enables designers to work under this paradigm.

We implement LLMaker in a simple graphical user interface
Windows application utilising OpenAI’s GPT-3.5-turbo-0613
[3] via the developer API. Upon launch, it initiates an empty
level for users to refine through natural language input. Users
can request modifications or clarifications, and the system
responds accordingly. While the system can call functions as
needed, it is not always mandatory. Users can freely explore
content properties and gather feedback through conversation
with the LLM as conversational agent [17] before requesting
any change to the level.

LLMaker relies on a predefined set of functions to operate.
During design the LLM can provide a function name and the
necessary arguments to call it with. These are generated based
on context and domain constraints. For instance, if asked to

TABLE I: User requests for test case T5. Each request is
submitted sequentially via LLMaker.

Create 3 rooms, each connected to the next one, all set in a different
European city
Add a goblin archer in the first room
Also add two zombies
Now generate a room connected to the first one, set in underground
Atlantis
Put a couple of evil mermaids in Atlantis
Place multiple ocean-themed traps in the corridor to Atlantis
Place a single treasure chest in all rooms, each containing a piece of
a treasure map
Remove the chest containing the second piece of the treasure map
Add another room connected to Atlantis, set in Hell
Place two fallen angels armed with flaming swords
Change one of the angels to a capybara monster
Set the health of the capybara to 1000
Make the capybara a punker, with pink spiky hair

add an enemy, the system may assign a random speed within
pre-specified ranges. Users can also provide specific values,
although the system ensures they adhere to constraints. The
outcome of function execution is relayed back to the user,
either as a success message or an explanation of any failures,
following the paradigm of functional errors [18].

A. Domain: Dungeon Crawler Levels

In this study, we replicate the popular RPG video game
Darkest Dungeon1. The game immerses players in a Love-
craftian world, where they navigate underground mazes while
managing stress levels of their hero squad. To emulate this en-
vironment realistically, we employ a context-aware generative
grammar, ensuring parameters define the properties of each
element within the level.

The level generation process begins with a root node,
leading to the expansion of rooms and corridors, each housing
encounters such as enemies, traps, or treasure chests. Enemies
are characterised by combat statistics and species, while traps
and treasure chests offer distinct challenges and rewards.
Unlike Darkest Dungeon, here each room and each entity
has to be uniquely identified by its name. Valid levels are
levels that comply to this grammar, and satisfy all pre-specified
constraints.

III. EXPERIMENTAL PROTOCOL

As introduced in Section I, we aim to validate two hy-
potheses: (1): function calling results in more valid artefacts
being generated; and (2): interaction with function calling is
faster compared to other methods. We test this by compar-
ing function calling configuration against different prompting
techniques on five separate test cases (T1-T5) available in
this project repository2. We report one test case in Table I.
These test cases simulate realistic scenarios for designing a
game level, varying in content complexity, specificity of user
requests, and different design control flow.

1Red Hook Studios, 2016
2We release the source code for this project at https://github.com/gallorob/

llmaker functioncalling
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We run each test case 10 times, with seed randomisation. We
compare four different ways to prompt the LLM: Zero-shot,
Few-shots [14], Chain-of-Thought [5], and Function Calling
[19]. The latter provides descriptions of functions and corre-
sponding arguments in the prompt3. Each interaction includes
the system prompt and a JSON representation of the current
level. We do not include the history of the conversation (i.e.,
past interactions between user and system), as it is not required
to fulfil the user requests. While function calling directly
results in the content being modified, the other approaches
generate the updated level as JSON, which we attempt to parse
to validate changes.

We define four possible outcomes for each interaction:
Parser Fail when the output is not parseable (i.e.: a malformed
JSON, such as missing properties in an entity), Domain Fail
when the level is invalid (i.e.: the level grammar is not
respected, such as a missing corridor between two rooms),
Design Fail when the output doesn’t match user requests, and
finally Success when the output is valid and fulfils the requests.
Function calling always produces valid levels due to back-
end constraints but may misinterpret or fail to meet all user
requests (leading to Design Fails).

We monitor changes to the level during execution for easier
debugging. We keep track of how many responses are returned
by the LLM before failure, and the time elapsed for each
response to be generated. We test whether content matches
user expectations, ensuring both objective (e.g., adding a new
room) and subjective (e.g., adding “a couple” of enemies
should result in more than one new enemy, and less than the
maximum number of enemies) requests are met. On failures,
we terminate the test case, tracking the triggering request and
ignoring the failing response elapsed time. We expect varying
average response times per test case, as different techniques
require a different number of tokens being exchanged to and
from the LLM.

IV. RESULTS

Table II presents the results of 10 runs with random seed
variation per test case (T1-T5). Other prompting techniques
often fail quickly, usually within 1 or 2 responses. Baseline
methods never complete a test case without failing. Function
calling never triggers parser or domain fails, though it may
cause design fails. It also achieves the highest average re-
sponses per test case with lowest per-request elapsed time.
We find that parser failures occur when the language model
disregards the prompt to always generate a JSON response,
instead asking the user for further details. Domain grammar
violations are the primary cause of failures in baseline models.
Most commonly, connecting corridors fail to be created when
generating a new room, despite this being specified in the
prompt. Another issue arises when the model deviates from
the level grammar, such as defining loot in a treasure chest
incorrectly.

3We report all prompts in https://github.com/gallorob/llmaker
functioncalling/tree/main/prompts

TABLE II: Results for different prompting methods on all test
cases averaged from 10 independent runs. Fails measure the
number of instances of 10 runs that failed, while Responses
and Time (per Request) are averaged from 10 runs and include
the 95% Confidence Interval. Responses and Time values with
⋆ indicate significantly outperforming all other configurations
on this Test Case.

Prompting Test
Case

Fails ↓ Responses ↑ Time (s) ↓Pars. Dom. Des.

Zero
Shot

T1 0 10 0 3±0.0 6.1±0.1
T2 0 10 0 3±0.0 10.2±0.2
T3 0 10 0 2±0.0 7.6±0.3
T4 10 0 0 1.1±0.2 2.8±1.5
T5 7 3 0 3±0.0 26.6±0.3

Few
Shot

T1 0 10 0 4±0.0 15.6±0.8
T2 0 10 0 4±0.0 12.7±0.2
T3 0 10 0 7±0.0 21.4±0.2
T4 0 10 0 3±0.0 5.9±0.1
T5 0 10 0 3±0.0 26.9±2.6

Chain
of

Thought

T1 0 10 0 3±0.0 16.4±0.4
T2 0 10 0 3±0.7 13.7±3.2
T3 0 10 0 2±0.0 11.9±0.3
T4 0 10 0 3±0.0 12.8±0.2
T5 10 0 0 1.5±0.9 67.3±4.8

Function
Calling

T1 0 0 7 7±0.0⋆ 9.6±0.6
T2 0 0 0 9±0.0⋆ 6.9±0.4⋆

T3 0 0 0 10±0.0⋆ 5.7±0.0⋆

T4 0 0 1 11±0.0⋆ 4.9±0.1
T5 0 0 0 13±0.0⋆ 8.5±0.1⋆

In terms of response time, a Wilcoxon signed-rank test with
Bonferroni correction for multiple comparisons showed that
function calling was significantly faster (p < 0.05) than all
other prompting methods in 4 of 5 test cases. Baseline models’
response time increases with level complexity due to the need
to regenerate the JSON level description. Chain-of-Thought
has the longest response time in the most complex test case
(T5), and generally its response time is between 100% (T1)
and 600% (T5) slower than function calling. This is because
Chain-of-Thought not only generates the JSON level descrip-
tion but also the decision-making process for altering the
level. Other baseline methods also show slower response times
compared to function calling, with Zero-Shot and Few-Shot
being 200% (T5) and 300% (T3) slower at worst, respectively.
The response time for function calling remains consistent
regardless of level complexity as it only generates function
parameters and a brief summary text response. However, in
one instance (T4), Zero-Shot achieves a lower elapsed time
than function calling, while failing to provide the required
JSON structure.

V. DISCUSSION

The results in Section IV show that LLMaker’s function
calling approach can still trigger design fails. It also main-
tains consistent response speed regardless of level complex-
ity. Among baselines, Chain-of-Thought performs the worst
due to longer response times. We find that our approach
validates both hypotheses presented in Section III: function
calling always generates consistent video game content with

https://github.com/gallorob/llmaker_functioncalling/tree/main/prompts
https://github.com/gallorob/llmaker_functioncalling/tree/main/prompts


a response time which would be acceptable for real-time
interaction (under 10 seconds).

There are however limitations. The first one is potential bias
in test cases selection, as these were compiled by the authors.
Secondly, while our goal was to test the different prompting
techniques on realistic prompts, their difficulty is subjective. A
more detailed and larger set of test cases is left for future work.
Thirdly, the design choices for the functions used to generate
and modify the game level and the domain constraints have to
be defined by the programmer, and the designer cannot alter
either of these, limiting their creative freedom. Finally, GPT-
3.5-Turbo-0613 was chosen as it was found to perform well
on a multitude of tasks [20], however different models such
as GPT-4 may yield much different results.

Despite the effectiveness of GPT models, their proprietary
nature raises concerns. Future iterations of LLMaker may
explore open-source alternatives such as Nexusraven 13B
[21]. While this work emphasises content consistency, future
research should consider usability (i.e.: how useful the LLM
responses were to a human designer) and aesthetics, leveraging
foundation models such as Stable Diffusion [22] to bring
the descriptions provided by the LLM to life. Additionally,
LLMaker lacks proactive assistance, a known issue being
actively researched [23]. Also, completion criteria are absent,
risking unplayable or imbalanced levels. Adding constraint
checks would ensure playability and balance.

Finally, we note that LLMaker is a mixed-initiative design
assistant that is in constant dialogue with the designer, opening
up future work for mixed-initiative tools where interaction
between human and machine is based exclusively on natural
language. However, this warrants evaluation for cognitive
demand and usability through studies focusing on natural
language dialogue.

VI. CONCLUSIONS

In this paper we introduced LLMaker, an innovative tool
for co-creative video game content design empowered by
large language models. In LLMaker, the interaction between
designer and system is entirely based on natural language,
with the LLM translating user queries into properly formatted
requests to a back-end system via function calling. We demon-
strated that function calling is superior to other LLM-based
methods for generating content in terms of prompt adherence
and domain constraints satisfaction. Additionally, LLMaker
consistently processes user requests in a few seconds, serving
the user with the updated content almost in real-time. Overall,
LLMaker demonstrates how function calling for LLMs can be
efficiently implemented in a game design tool. With this work,
we hope to inspire other researchers to explore the paradigm
of co-creativity based on natural language, its strengths, limi-
tations, and possibilities.
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